Jowrnal of Economic Perspectives—Volume 10, Number 1—Winter 1996—Pages 105-120

Macroeconomics and Methodology

Christopher A. Sims

his essay begins with a sketch of some ways I find it useful to think about

science and its uses. Following that, the essay applies the framework it has

sketched to discussion of several aspects of the recent history of macro-
economics. It considers skeptically the effort by some economists in the real busi-
ness cycle school to define a quantitative methodology that stands in opposition to,
or at least ignores, econometrics “‘in the modern (narrow) sense of the term.”” It
connects this effort to the concurrent tendency across much of social science for
scholars to question the value of statistical rigor and increasingly see their disci-
plines as searches for persuasive arguments rather than as searches for objective
truth. The essay points to lines of substantive progress in macroeconomics that
apparently flout the methodological prescriptions of the real business cycle school
purists, yet are producing advances in understanding at least as important as what
purist research has in fact achieved.

Science as Data Reduction

Advances in the natural sciences are discoveries of ways to compress data con-
cerning the natural world—both data that already exists and potential data—with
minimal loss of information. For example, Tycho Brahe accumulated large amounts
of reliable data on the movements of the planets. Kepler observed that they are all
on elliptical orbits with the sun at a focus, thereby accomplishing a sharp data

m Christopher A. Sims is Professor of Economics, Yale University, New Haven, Connecticut.
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compression.' Newton found the inverse-square law, allowing still further compres-
sion® and also allowing the same formula to organize existing data and predict new
experimental or practical data in areas remote from the study of planetary motion.

Economics aims to accomplish the same sort of thing in relation to data on
the economy, but is less successful. Whatever theory economists use to characterize
data, the actual data always contain substantial variation that is not captured in the
theory. The quality of the theory’s characterization of the data tends to deteriorate
as we extend it to data remote in time, location or circumstances from the data
from which the theory was initially developed.

This view, treating science as data reduction, may sound oversimplified, but it
is in fact a flexible metaphor that should not be controversial. The contentious
issues should concern what ““data’ are to be characterized and what constitutes a
“‘compression.”

It was once common for economists to think of the scientific enterprise as
formulating testable hypotheses and confronting them with data. True hypotheses
would survive the tests, while false ones would be eliminated. The science-as-data-
compression view lets us see the limits of this hypothesis-testing view. The latter is
dependent on the idea that there are true and false theories, when in fact the degree
to which theories succeed in reducing data can be a continuum. The theory that
planetary orbits are ellipses is only approximate if measurements are made carefully
enough. It does not seem helpful to say that therefore it is false and should be
rejected. Furthermore, “‘theories’ can be so complex that they do not actually allow
important data reduction, even though a naive hypothesis-testing approach might
accept them as “‘true.”” More commonly, theories can differ less in whether they
pass tests of match with the data than in the degree to which the theories are
themselves simple. Planetary motions could be predicted quite accurately before
Kepler; Kepler nonetheless had a better theory.

A good theory must not only display order in the data (which is the same thing
as compressing it), it must do so in a way that is convincing and understandable to
the target audience for the theory. But this does not mean that a successful scientific
theory is understandable by many people. In fact, the most successful scientific
theories are fully understood by very few people. They are successful because of
institutions and conventions that support the recognition of specialized expertise
and its perpetuation by rigorous training.

So though an effective theory must be persuasive, its persuasiveness cannot be
determined entirely by examining the theory itself. One has to look also at who the
accepted experts are, what kinds of arguments they are trained to understand and

' Kepler’s theory allowed data on the position of a planet that before required four coordinates (three
spatial, one temporal) for each of N observed points to be reproduced with very high accuracy (from an
economist’s point of view, at least) with two coordinates (arc-length along the ellipse, time) for each of
the N data points, plus the five numbers necessary to characterize the ellipse in 3-space.

* Newton’s theory allowed nearly the same accuracy with a single coordinate, time, together with the
location and velocity vectors of the planet relative to the sun at some base time.
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approve. And it is part of the continuing task of the discipline to assess what argu-
ments its members ought to be trained to understand and approve.

Priesthoods and guilds—organizations of people with acknowledged expertise,
training programs and hierarchical structure—are the imperfect social mechanisms
by which bodies of knowledge are perpetuated. Modern science and economics are
special cases.” In understanding methodological disputes, it helps to bear in mind
that the discussion is part of the workings of such an institution.

Limits of the Analogy Between Economics and Physical Sciences

Most natural sciences give a much less important role to probability-based for-
mal inference than does economics. Since economics seems closer to natural sci-
ences than are the other social sciences, in that economics makes more use of
mathematically sophisticated theory and has more abundant data, why should it
not also be less in need of statistical methodology? Examining the differences
among sciences in a little more detail, we can see that probability-based inference
is unavoidable in economics and that in this economics resembles related sciences,
whether social or natural.

Economists can do very little experimentation to produce crucial data. This is
particularly true of macroeconomics. Important policy questions demand opinions
from economic experts from month to month, regardless of whether professional
consensus has emerged on the questions. As a result, economists normally find
themselves considering many theories and models with legitimate claims to match-
ing the data and predicting the effects of policy. We have to deliver recommenda-
tions or accurate description of the nature of the uncertainty about the conse-
quences of alternative policies, despite the lack of a single accepted theory. Because
noneconomists often favor one policy or another based on their own interests, or
prefer economic advice that pretends to certainty, there is an incentive for econo-
mists to become contending advocates of theories, rather than cool assessors of the
state of knowledge.

There are natural sciences that share some of these characteristics. Astrono-
mers can’t do experiments, but they have more data than we do. Cosmology is short
of relevant data and has contending theories, but is not pressed into service on
policy decisions. Epidemiology is policy relevant and has limits on experimentation,
but some kinds of experimentation are open to it—particularly use of animal mod-
els. Atmospheric science has limited experimental capacity, but in weather fore-
casting has more data than we do and less demand to predict the effects of policy.
In modeling the effects of pollution and global warming, though, atmospheric sci-
ence begins to be close to economics, with competing models that give different

3 This is of course an oversimplification, for rhetorical effect. For a more nuanced discussion of how
modern science relates to and emerged from priesthoods and guilds, see Ben-David (1971).
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policyrelevant answers. But in this area atmospheric science does not have meth-
odological lessons to teach us; I would say if anything the reverse is true.

Axiomatic arguments can produce the conclusion that anyone making deci-
sions under uncertainty must act as if that agent has a probability distribution over
the uncertainty, updating the probability distribution by Bayes’ rule as new evidence
accumulates.” People making decisions whose results depend on which of a set of
scientific theories is correct should therefore be interested in probabilistic char-
acterizations of the state of evidence. Yet in most physical sciences, such probabi-
listic characterizations of evidence are rare. Scientists understand the concept of
standard error, but it seldom plays a central role in their discussion of results. In
experimental sciences, this is due to the possibility of constructing an experiment
in such a way, or continuing it to such a length, that standard errors of measurement
are negligible. When this is possible, it certainly makes sense to do it.”

In nonexperimental sciences with a great deal of data, like some branches of
astronomy or atmospheric science, data may be plentiful but not suited to resolve
some important outstanding theoretical issue. An interesting example is the nar-
rative in Lindzen (1990, sec. 9.1) of the development of the theory of atmospheric
tides—diurnal variations of barometric pressure. For a long time in this field, theory
and data collection leapfrogged each other, with theory postulating mechanisms
on which little data were available, the data becoming available and contradicting
the theory and new theory then emerging. Because the amount of data was large
and it was error ridden, something like what economists call reduced-form mod-
eling went on continually in order to extract patterns from the noisy data. Even at
the time Lindzen wrote, the best theory could not account for important features
of the data. The gaps were well documented, and Lindzen’s narrative closes with
suggestions for how they might be accounted for. There is no formal statistical
comparison of models in the narrative, but also no account of any use of the models
in decision making. If they had to be used to extrapolate the effects of interventions
(pollution regulations, say) on atmospheric tides, and if the consequences were
important, there would be no way to avoid making assumptions on, or even explic-
itly modeling, the variation the theories could not account for: it would have to be
treated as random error.

In clinical medicine and epidemiology, statistical assessment of evidence is as
pervasive as it is in economics. A treatment for a disease is a kind of theory, and
when one is compared to another in a clinical trial, the comparison is nearly always
statistical. If clinical trials were cheap, and if there were not ethical problems, they
could be run at such a scale that, as in experimental science, the uncertainty in the
results would become negligible. In fact, though, trials are expensive and patients
cannot be given apparently worse treatments once the better therapy has acquired

* See, for example, the first two chapters of Ferguson (1967) or chapters 2 and 6 of Robert (1994).

® For an extended analysis of why some natural sciences in practice consider only “‘objective’” probabil-
ities and make little formal use of probabilistic inference despite the validity of the axiomatic foundations
of Bayesian decision theory, see Burks (1977).
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a high probability, even though near certainty is not yet available. Epidemiology
therefore often must work with nonexperimental data that produce difficulties in
causal interpretation much like those facing economics. The debate over the evi-
dence linking smoking and cancer has strong parallels with debates over macro-
economic policy issues, and it was inevitably statistical. Biological experiments not
involving human subjects were possible in that case, though, and for macroeco-
nomic policy questions, there is seldom anything comparable.

In other social sciences, there has recently been a reaction against formal sta-
tistical methodology. Many sociologists, for example, argue that insistence on quan-
titative evidence and formal statistical inference forces field research into a rigid
pattern. Close observation and narrative description, like what has been common
in anthropology, is advocated instead (for example, Bryman, 1988). A few econo-
mists also take this point of view. Bewley (1994) has undertaken work on wage and
employment adjustment, using interviews with individual firms, that is close to the
spirit of the new style in sociology.’

The coincident timing of attacks on statistical methods across disparate social
sciences is probably not an accident. But the common element in these attacks is
not a unified alternative approach—those advocating anthropological-style field
research are criticizing statistical method from an almost precisely opposite point
of view to that of purist real business cycle theorists. Instead, the popularity of the
critiques probably arises from the excesses of enthusiasts of statistical methods.
Pioneering statistical studies can be followed by mechanical imitations. Important
formal inference techniques can be elaborated beyond what is useful for, or even
at the expense of; their actual application. Indeed, insistence on elaborate statistical
method can stifle the emergence of new ideas. Hence a turning away from statistical
method can in some contexts play a constructive role. Anthropological method in
field research in economics seems promising at a stage (as in the theory of price
and wage rigidity in economics) where there are few theories, or only abstract and
unconvincing theories, available and informal exploration in search of new patterns
and generalizations is important. A focus on solving and calibrating models, rather
than carefully fitting them to data, is reasonable at a stage where solving the models
is by itself a major research task. When plausible theories have been advanced,
though, and when decisions depend on evaluating them, more systematic collection
and comparison of evidence cannot be avoided.

The pattern of variation across disciplines in the role of formal statistical in-
ference reflects two principles. First, formal statistical inference is not important

% Another source of skepticism about econometrics may be the side effects of the Lucas critique of
econometric policy evaluation. Nothing in the explicit logic of that critique suggests that probabilistic
inference is in itself invalid or problematic. It criticizes a particular way of modeling macroeconomic
policy interventions in a particular class of models. But the crude summary of its message—*‘econometric
models are useless for policy evaluation” —no doubt contributed to the broader tendency of economists
to question econometric method. In Sims (1987), I argue that the original formulation of the Lucas
critique is itself logically flawed.
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when the data are so abundant that they allow the available theories to be clearly
ranked. This is typical of experimental natural sciences. Second, formal statistical
inference is not necessary when there is no need to choose among competing
theories among which the data do not distinguish decisively. But if the data do not
make the choice of theory obvious, and if decisions depend on the choice, experts
can report and discuss their conclusions reasonably only using notions of
probability.

All the argument of this section is Bayesian—that is, it treats uncertainty across
theories as no different conceptually from stochastic elements of the theories them-
selves. It is only from this perspective that the claim that decision making under
uncertainty must be probabilistic can be supported. It is also only from this per-
spective that the typical inference problem in macroeconomics—where a single set
of historically given time series must be used to sort out which of a variety of theo-
retical interpretations are likely—makes sense (Sims, 1982).”

The Rhetoric of Economics

Any economist who uses “‘rhetoric” in an article these days usually is reflecting
at least implicitly the influence of McCloskey’s (1983) antimethodological meth-
odological essay and subsequent related writing. This work in part reflected, in part
instigated, an impatience with demands for technical rigor that emerged not only
in the attitudes of the real business cycle school purists, but also in some macroecon-
omists of quite disparate substantive views. McCloskey wanted economists to rec-
ognize that in their professional writing, even at its most academic or scientific,
they were engaged in persuasion. The essay identified and analyzed some of the
rhetorical tools specific to economic argument, as well as the way economists use
more universal tools. My own viewpoint as laid out above is consistent with Mc-
Closkey’s in a number of respects. Both recognize that theories are not “true’’ or
“false” and are not “‘tested” in single decisive confrontations with data. Both rec-
ognize that one can legitimately prefer one theory to another even when both fit
the data to the same degree. Both reflect a suspicion of orthodoxy, hierarchy and
methodological prescriptions as potential tools of priestly resistance to change.

But McCloskey’s enthusiasm for identifying rhetorical devices in economic ar-
gument and encouraging rhetorical skill among economists risks making us soft on
quackery. For example, a simple theory is preferable to a complicated one if both
accord equally well with the data, making the simpler one a more thorough data
compression. Thus I agree with McCloskey that a naive hypothesis-testing model of
how theories are evaluated is a mistake. But a simple theory may gain adherents for

"It should be noted that this point of view implies a critical stance toward some recent developments in
econometric theory, particularly the literature on hypothesis testing in the presence of possible nonsta-
tionarity and cointegration, and is in this respect aligned with real business cycle purists (Sims, 1988;
Sims and Uhlig, 1991).
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other reasons—it may appeal to people with less training, who want to believe that
a theory accessible to them is correct, or the evidence of its poorer fit may not be
understandable without requiring rare technical skills; or the simple theory may fit
the political or aesthetic tastes of many people. Convincing people that a simple
theory is better than a more complicated one by appeal to something like these
latter sources of support can be rhetorically effective in that it persuades people,
and it may be done with admirable skill. But it is bad economics. Indeed, while I
agree with McCloskey that recognizing rhetorical devices in economic discourse
and analyzing their effectiveness is worthwhile, my first reaction on recognizing a
persuasive type of argument is not enthusiasm, but wariness.

Economics is not physics. Science in general does not consist of formulating
theories, testing them against data and accepting or rejecting them. But we can
recognize these points without losing sight of the qualitative difference between
modern science and classical or medieval natural philosophy: modern science has
successfully created agreement that in scientific discourse certain types of appar-
ently persuasive arguments are not legitimate. The only kind of argument that
modern science treats as legitimate concerns the match of theory to data generated
by experiment and observation. This means that sometimes badly written, difficult
papers presenting theories that are aesthetically, politically or religiously displeasing
are more persuasive to scientists than clearly written, easily understood papers that
present theories that many people find inherently attractive. The fact that econom-
ics is not physics does not mean that we should not aim to apply the same funda-
mental standards for what constitutes legitimate argument; we can insist that the
ultimate criterion for judging economic ideas is the degree to which they help us
order and summarize data, that it is not legitimate to try to protect attractive the-
ories from the data.

We can insist on such standards, but it is not at all inevitable that we will do so.
Because economics, like other social sciences, does not achieve the clean successes
and consensuses of the natural sciences, there can be disagreement not only about
which theories are best, but about which modes of argument are legitimate. The
standard that theories need to confront data, not be protected from it, is itself in
constant need of defense, and its implications are regularly in dispute among econ-
omists who believe themselves committed to it. While McCloskey’s argument and
analysis can in part be seen as a useful part of this process of defending scientific
standards in economics, some of the influence of McCloskey’s writing has been
malign.

Though it does not show up often explicitly in written literature, I encounter
with increasing frequency in one-on-one professional argument an attitude I think
of as rhetorical cynicism. A bit of it appears in the original McCloskey essay. For
example, McCloskey (p. 489) cites with admiration the Friedman and Schwartz
Monetary History in a paragraph that ends with, “‘what was telling in the debate was
the sheer bulk of the book—the richness and intelligence of its arguments, however
irrelevant most of the arguments were to the main point.” It was perhaps not as
clear in 1983 when McCloskey wrote as it is now that monetarism was on its way to
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the same macroeconomic limbo as Keynesianism, but even so, did McCloskey
mean to suggest that it is good that economists were persuaded by irrelevant
arguments? Or that we should admire rhetorical techniques that succeed in per-
suading the profession even if we ourselves can recognize that they should not
persuade? I think many economists now see themselves as experts in persuasion
as much as experts in substantive knowledge. They are willing to use arguments
they know are flawed without explaining the flaws or to cite evidence they know
could be shown to be misleading, for the sake of rhetorical effectiveness. There
have always been economists who became, sincerely or cynically, uncritical apol-
ogists for particular viewpoints. The recent phenomenon is somewhat different.
Economists seem to be telling themselves a story like this: a bold article, free of
technical detail beyond a respectable minimum, is more likely to be cited fre-
quently than a more cautious one that carefully defines the limits of its results.
Leaving it to someone else to write carping technical critiques generates more
citations and is not irresponsible if one thinks of one’s role as like that of a
lawyer in adversarial court proceedings.

As is probably apparent, my own opinion is that whatever the value of viewing
economics as rhetoric, that view of economics should remain secondary, with the
view of economics as science, in the sense that it is an enterprise that holds theory
accountable to data, remaining primary. It then follows that if economists are to
communicate about the central questions of the discipline, they will need the lan-
guage of statistical inference.

The Real Business Cycle School

One way to characterize macroeconomics is as that branch of economics that
makes drastic simplifications for the sake of studying phenomena—determination
of the price level, the business cycle, economic growth—that inherently require
analysis of general equilibrium. It is therefore natural and promising that macro-
economists, as computational power expands, are exploring methods for using pre-
viously intractable dynamic, stochastic, general equilibrium (DSGE) models. This
phase of research, in which people examine which kinds of models are manageable
and interesting and sharpen methods of numerical analysis, shares some charac-
teristics with “‘normal science” as Kuhn describes it: textbooks are written (Sar-
gent’s (1987) Dynamic Macroeconomic Thoery, Stokey, Lucas and Prescott’s (1989)
Recursive Methods in Economic Dynamics), researchers pose and solve puzzles, and
there is a general sense of powerful methods being extended to cover new areas of
application.

This activity has critics in the profession. The models are still too stylized and
too remote from fitting the data to provide reliable guides to policy. Since consid-
erable intellectual energy is going in to exploring them nonetheless, economists
with strong interests in current policy, or high rates of time discount, or a reluctance
to invest in learning the newly fashionable analytic methods, are ready to argue
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that research of this kind should not be supported or taken seriously. Not surpris-
ingly, the people who go ahead into this area of work despite the arguments against
it develop some intellectual armor against such attacks. Much of this armor is visible
more in informal interactions than in published writing. It is therefore valuable to
have the armor displayed, even if in a form more rigid than most economists work-
ing in the area would probably be comfortable in, in the Kydland and Prescott essay
in this issue.

The argument seems to be that what dynamic, stochastic, general equilibrium
modelers in economics are doing not only resembles Kuhn’s normal science, it is
normal science. Macroeconomists are said to have available a ‘‘well-tested,” or
“standard”’ theory. They do (computational) ‘‘experiments.”” These experiments
usually result in “‘established theory becoming stronger,” but occasionally discover
an extension of the existing theory that is useful, and thereby “established theory”
is “improved.”

But these analogies with established physical sciences are strained. The
neoclassical stochastic growth model that Kydland and Prescott put forth as the
foundation of dynamic, stochastic, general equilibrium modeling is legitimately
labeled accepted theory in one limited sense. There is an interacting group of
researchers working out the implications of models built on this base; within
this group the theory is accepted as a working hypothesis. But even within
this group there is no illusion that the theory is noncontroversial in the
profession at large. Most in the group would not even assert confidently that it
is clear that theory of this type will deliver on its promise, any more than did
Keynesian simultaneous equations models or natural rate rational expectations
models.

What Kydland and Prescott call computational experiments are computations,
not experiments. In economics, unlike experimental sciences, we cannot create
observations designed to resolve our uncertainties about theories; no amount of
computation can change that.

Dynamic, stochastic, general equilibrium modeling has delivered little em-
pirical payoff so far. Macroeconomists have developed a variety of approaches
to compressing the time series data using only informal theoretical ideas. The
business cycle stage charts of the early NBER business cycle analysts were among
the first of these reduced form modeling approaches, but multivariate spectral
analysis, distributed lag regression, turning point timing analysis, cross-
correlation functions, distributed lag regression, principle component analysis,
vector autoregression impulse response analysis and dynamic factor analysis have
all seen use. Certain patterns turned up by these analyses have the status of
stylized facts: for example, Okun’s law (the tendency of employment to lag out-
put), the strong predictive value of interest rate innovations for output and
prices, the smoothness of aggregate price and wage movements, the tendency
of productivity to fluctuate procyclically, and the strong correlation of monetary
aggregates with nominal income and their (Granger) causal priority to it. I think
it is fair to say that most real business cycle research has ignored most of the
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known facts about the business cycle in assessing the match between DSGE mod-
els and the facts. Kydland and Prescott rightly point out that all theories (at least
in macroeconomics) are false and that therefore it does not make sense to dis-
card a theory if it fails to fit perfectly. But if a theory fits much worse than
alternative theories, that is a strike against it. We may still be interested in a
poorly fitting theory if the theory offers an especially dramatic data compression
(that is, is very simple relative to the data it confronts) or if it is a type of theory
that promises to fit better with further work. But there can be no argument for
deliberately shying away from documenting the ways in which the theory does
and does not match the data.

This issue is distinct from the question of whether we should employ formal
methods of statistical inference. Here the issue is only whether the data is going to
be confronted as it exists, in all its density. When Mark Watson (1993), eschewing
“formal statistical inference,” used an extension of standard tools for examining
fit of a time series model by frequency in a Fourier analysis, he allowed us to see
that the neoclassical stochastic growth model at the core of the real business cycle
approach is very far from accounting well even for what we think of as business
cycle variation in output itself. Watson’s analysis does not imply that the real busi-
ness cycle approach should be abandoned. It does suggest that frequency domain
analysis or other standard methods of orthogonal decomposition of macroeco-
nomic time series data (like vector autoregression impulse responses) ought to be
a standard part of evaluating real business cycle models, with the aim of getting
better fit than what Watson found.

Kydland and Prescott appear to argue strongly against using econometric tools
in the modern sense of the term. In part this stems from their caricature of formal
statistical inference as “statistical hypothesis testing™ that will certainly reject any
(necessarily false) theory when given enough data. Bayesian critiques of classical
hypothesis testing have long made the same kind of point, without rejecting formal
statistical inference. Kydland and Prescott also claim, ““Searching within some para-
metric class of economies for the one that best fits a set of aggregate time series
makes little sense, because it isn’t likely to answer an interesting question.” Yet they
put forth as an interesting type of question, ‘“‘How much the U.S. postwar economy
would have fluctuated if technology shocks had been the only source of fluctua-
tions?” Surely one approach to such a question would be to construct a parametric
class of dynamic, stochastic, general-equilibrium models in which the parameter
indexed the contribution of technology shocks to fluctuations and to examine the
behavior of model fit as a function of this parameter. Of course it might turn out
that model fit was insensitive to the parameter—the model was weakly identified
in this dimension—but it might be instead that some sources of impulse response
could be ruled out as unlikely, because they implied a poor fit. Showing this would
not amount to simply finding the fitmaximizing parameter value, of course, but
instead to characterizing the shape of the likelihood. If Kydland and Prescott are
objecting only to the idea of ending inference with the picking of the parameter
that gives the best fit, they are taking the position of Bayesian or likelihood
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principle-based inference.” It seems likely, though, that they intend a broader ob-
jection to probabilistic inference, in which case they seem to contradict some of
their own position on what are interesting research questions.

Kydland and Prescott do approve some probability-based inference. They ar-
gue that it is reasonable to look at the theoretical probability distribution that is
implied by a model for a set of statistics and to compare this to the corresponding
statistics computed from the actual data. But a stochastic model produces a distri-
bution, not a statistic. How are we meant to ‘‘compare’’ a distribution to a statistic?
What conclusions might we draw from such a comparison? In this paper there is
little guidance as to how we should make or interpret such a comparison.” It is
perhaps not surprising in the light of Kydland and Prescott’s inference aversion
that there is little guidance, because these questions are the root out of which all
of statistical inference grows.

We can guess what use of such a comparison Kydland and Prescott intend by
looking at their discussion of what constitutes ‘‘well-tested theory.” They consider
the neoclassical growth framework a well-tested theory. They say that it gives us
confidence in the theory that it implies that when a model economy is subjected
to realistic shocks, ‘‘it should display business cycle fluctuations of a quantitative
nature similar to those actually observed.” Another way of putting this, apparently,
is that stochastic models based on the neoclassical growth framework produce
“normallooking”’ fluctuations. For some purposes this kind of language may suf-
fice, but when we need to consider which of two or more models or theories with
different policy implications is more reliable, it does not take us very far to be told
that we should be more confident in the one whose simulated data is more ‘‘normal-
looking”’ or is of a ‘‘quantitative nature’” more ‘‘similar” to the actual data. My
view, for example, is that Watson (1993) showed us that the stochastic neoclassical
growth model as usually applied in the real business cycle literature produces sim-
ulated data that is drastically dissimilar to the actual data. If Kydland, Prescott and
I are to have a reasoned discussion about this point, we will have to start talking
about what we mean by “‘similar’” and about what alternative models or theories
are the standard against which the match of this one to the data is to be judged.
Then we will be engaged in statistical inference.

If hyperbolic claims for the research accomplishments of dynamic, stochastic,
general equilibrium models and for immunity of such models to criticism for naive
econometric method were necessary to sustain the enthusiasm of the participants,
Kydland and Prescott might be justified in a bit of forensic exaggeration. But the
field is interesting enough to attract attention from researchers without this, and
the air of dogma and ideological rigidity these claims attach to the field are an
unnecessary burden on it.

* The likelihood principle is an implication of a Bayesian approach to inference, but can be argued for
on other grounds as well. See Berger and Wolpert (1988).

¢ Actually, in an earlier version there was a little more guidance, and it sounded a lot like simple statistical
inference.
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Progress in Quantitative Macroeconomics

There is work that is based on dynamic, stochastic, general equilibrium models
and that makes serious use of formal methods of probability-based inference.
McGrattan, Rogerson and Wright (1993), for example, estimate a standard real
business cycle model using maximum likelihood, which could be a first step toward
comparing its fit to other types of DSGE models or naive reduced form models.
Leeper and Sims (1994) fit a DSGE model that adds to what Kydland and Prescott
lay out as the standard neoclassical model a fluctuating relative price of consump-
tion and capital goods and an articulated monetary and fiscal policy sector. The
Leeper-Sims model comes close to the fit of a first-order reduced form vector au-
toregression model on a set of three variables. This is apparently much better than
the fit of the versions of the neoclassical model that appear throughout the real
business cycle literature, though because the fit of those models is seldom examined
in a careful, standardized way, it is difficult to be certain of this. In any case, it is
clear that it is becoming quite feasible to produce likelihood surfaces and one-step-
ahead prediction residuals for DSGE models, thus providing a basis for comparison
of alternative models meant to explain the same data series. There is considerable
interest in making such comparisons, and it is essential before the models can
become the basis for quantitative policy analysis. It will be happening even if Kyd-
land and Prescott cannot be persuaded to assist in the process.

Other streams of research in macroeconomics are making as much progress,
from an empirical point of view, as real business cycle modeling has yet achieved.
One is modern policy modeling in the tradition of simultaneous equations mod-
eling. These models have had limited attention from academic macroeconomists
because of the concentration of research interest on building equilibrium models.
But dynamic, stochastic, general equilibrium models have not been produced at a
scale, level of detail and fit that allows them to be used in the actual process of
monetary and fiscal policy formation. The result is that the field of policy modeling
has been left to economists close to the policy process outside of academia, together
with a few academic economists with strong policy interests. The models have de-
veloped to include rational expectations and expanded to include international
linkages. This has come at a cost, however. Because implementing rational expec-
tations at the scale of these models has been seen as computationally difficult, the
stochastic structure of the models has become even more stylized and unbelievable
than when I wrote about the then-existing models in Sims (1980b).

A good example of work on this line is Taylor (1993). The larger of the two
models in that book uses consumption and investment functions loosely based on
dynamic optimizing theories and incorporating expectations of future income ex-
plicitly. It has wage adjustments that are sluggish and depend on expectations of
the future. It has international linkages that use expectational interest rate parity
conditions. In these respects it is an advance beyond the state of the art in 1980.
But because the optimizing theory is used only informally, the model contains some
structural anomalies. Further, equations of the model are estimated one at a time,
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in some cases using statistical methods that are incompatible with the model’s sto-
chastic specification. The work is nonetheless promising, because it maintains the
simultaneous equation modeling tradition of dense contact with the data and be-
cause it seems on the verge of substantial further progress. Recent developments
in computing power and standardization of solution methods for linear rational
expectations models make it seem likely that Taylor could apply to the full-scale
model in the latter part of his book the more internally consistent statistical meth-
odology he uses on a smaller example model in the first chapter. For the same
reason, he should be able to connect his model more completely to a theory of
dynamic optimizing behavior. It would thus more closely approach the real business
cycle school’s level of internal consistency and interpretability, reattain or improve
upon the standards of statistical fit of the original simultaneous equation modeling
tradition and still preserve the scale and detail needed for application to policy
analysis.

Another distinct stream of research, which may look more significant to me
than it should because of my own involvement with it, uses weakly identified time
series models to isolate the effects of monetary policy. This style of work, in contrast
with standard simultaneous equation modeling, begins with careful multivariate
time series modeling of the data, developing evidence on prominent regularities.
Restrictions based on substantive economic reasoning are imposed only as necessary
to interpret the data and always with an eye to avoiding distortion of the model’s
fit.

Work in this style began with Friedman and Schwartz, who challenged conven-
tional Keynesian thinking by displaying evidence of the strong correlation between
monetary aggregates and income and of timing relationships, both in time series
data and in particular historical episodes, that suggested causality running from
money to income. I showed that beyond correlation and timing, there was a one-
way predictive relationship between money and income (Sims, 1972). This implied
that money was causally prior to nominal income according to the same definition
of a causal ordering that underlies putting the “‘causally prior’ variable on the
right-hand side of a regression.

From this point onward, most of this literature focused on using reduced-form
models that summarized the data by showing how all variables in the system are
predicted to change following a surprise change in any one variable. This in effect
breaks the variation in the data into mutually uncorrelated pieces, helping to isolate
the major regularities. The surprise changes are called ‘‘innovations,”” and the pre-
dicted patterns of change are called “‘impulse responses.”” I showed in Sims (1980a),
following work by Y. P. Mehra (1978), that short-term interest rate innovations
absorbed most of the predictive power of money innovations for output when the
interest rates were added to a multivariate system. This undermined the monetarist
claim that exogenous disturbances to the money stock were generated by policy
and a dominant source of business cycle fluctuations, but left open the question of
how the interest rate innovations should be interpreted. Starting in the mid-'80s
with work by Bernanke (1986), Blanchard and Watson (1986) and Sims (1986), the
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informal identification arguments that had been used in this literature were sup-
plemented with formal ones, adaptations to this weakly identified context of the
methods used in the simultaneous equations literature. Bernanke and Blinder
(1992) argued for identifying federal funds rate innovations as policy shocks, sup-
porting their time series analysis with institutional detail. I showed (1992) that the
stylized facts that this literature was codifying and interpreting were stable across a
range of economies outside the United States, but that in certain respects these
facts did not accord well with the interpretation of interest rate innovations as policy
disturbances. I had already showed that the main anomaly—the “‘price puzzle” in
which inflation rises after an apparent monetary contraction—would disappear
under a particular set of identifying assumptions for U.S. data (Sims, 1986). Other
researchers joined in trying to delineate the range of identifying assumptions con-
sistent with the data (Christiano, Eichenbaum and Evans, 1994; Gordon and Lee-
per, 1995; Sims and Zha, 1995). Other recent work has extended the models to
open economy environments with interesting results (Eichenbaum and Evans,
1993; Soyoung Kim, 1994; Soyoung Kim and Roubini, 1995; Cushman and Zha,
1994).

This literature has advanced knowledge in several ways. It has established firmly
that most of the observed variation in monetary policy instruments—interest rates
and monetary aggregates—cannot be treated as exogenously generated by random
shifts in policy. (Incredibly, real business cycle school attempts to introduce mon-
etary variables into dynamic, stochastic, general equilibrium models still often con-
tradict this by now elementary business cycle fact.) It has given us a clearer quan-
titative picture of the size and dynamics of the effects of monetary policy. It has
shown us that our knowledge about the size of these effects is still uncertain and
that, because monetary contraction is rarely a spontaneous policy decision, the
apparently eloquent fact that monetary contractions are followed by recession is
hard to interpret.

The work suffers from some rhetorical handicaps. It cannot be understood
without some familiarity with time series and simultaneous equations modeling
ideas. Though the interpretations that it puts forward are influenced by rational
expectations arguments, they find no need to make formal use of them. The work
has proceeded incrementally, with no single paper or idea having dramatically
changed people’s thinking. The conclusions the work leads to tend more strongly
to undermine naively confident interpretations of the data than to provide tech-
nical support for any simple policy position.

Some macroeconomists seem to have the impression that because this litera-
ture has not used dynamic optimization theory or rational expectations explicitly,
and because it has found a version of simultaneous equations modeling essential,
it is part of a tradition that we now know to be obsolete. In fact, this literature aims
at minimizing reliance on ad hoc modeling conventions of both the traditional
simultaneous equations style and the new dynamic, stochastic, general equilibrium
style, in order to focus cleanly on the central issue of identifying the distinction
between variation generated by deliberate policy action and variation generated by
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disturbances outside of the policy process.'’ The literature is probably now reaching
a level of maturity at which it will pay to open up connections to DSGE models (by
examining a range of more tightly restricted identifications) and to large-scale pol-
icy models (by considering larger and internationally linked versions of the mod-
els). Soyoung Kim (1994) is a step in the latter direction, and Sims (1989), Jinill
Kim (1995) and Leeper and Sims (1994) are steps in the former direction.

Conclusion

Empirical macroeconomists are engaged in several promising lines of work.
They are also engaged in making strained analogies between their work and the
natural sciences and in classifying work in styles other than their own as outdated
or mistaken based on its methods, not its substance. Since there is also a tendency
in the profession to turn away from all technically demanding forms of theorizing
and data analysis, it does not make sense for those of us who persist in such theo-
rizing and data analysis to focus a lot of negative energy on each other. All the lines
of work described in the previous section, including real business cycle modeling,
are potentially useful, and the lines of work show some tendency to converge. We
would be better off if we spent more time in reading each others’ work and less in
thinking up grand excuses for ignoring it.
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